Publications

Abstract

Transmembrane mucins (TMs) are restricted to the apical surface of normal epithelia. In cancer, TMs not only are over-expressed, but also lose polarized distribution. MUC16/CA125 is a high molecular weight TM carrying the CA125 epitope, a well-known molecular marker for human cancers. MUC16 mRNA and protein expression was mildly stimulated by low concentrations of TNFα (2.5 ng/ml) or IFNγ (20 IU/ml) when used alone; however, combined treatment with both cytokines resulted in a moderate (3-fold or less) to large (> 10-fold) stimulation of MUC16 mRNA and protein expression in a variety of cancer cell types indicating that this may be a general response. Human cancer tissue microarray analysis indicated that MUC16 expression directly correlates with TNFα and IFNγ staining intensities in certain cancers. We show that NFκB is an important mediator of cytokine stimulation of MUC16 since siRNA-mediated knockdown of NFκB/p65 greatly reduced cytokine responsiveness. Finally, we demonstrate that the 250 bp proximal promoter region of MUC16 contains an NFκB binding site that accounts for a large portion of the TNFα response. Developing methods to manipulate MUC16 expression could provide new approaches to treating cancers whose growth or metastasis is characterized by elevated levels of TMs, including MUC16.

Keywords:

cancer growth and metastasis, MCF-7 cell line, MUC16 expression, transmembrane mucins, tumour microenvironment

Abstract

Variability in drug-metabolizing enzyme developmental trajectories contributes to interindividual differences in susceptibility to chemical toxicity and adverse drug reactions, particularly in the first years of life. Factors linked to these interindividual differences are largely unknown, but molecular mechanisms regulating ontogeny are likely involved. To evaluate chromatin structure dynamics as a likely contributing mechanism, age-dependent changes in modified and variant histone occupancy were evaluated within known CYP3A4 and 3A7 regulatory domains. Chromatin immunoprecipitation using fetal or postnatal human hepatocyte chromatin pools followed by quantitative polymerase chain reaction DNA amplification was used to determine relative chromatin occupancy by modified and variant histones. Chromatin structure representing a poised transcriptional state (bivalent chromatin), indicated by the occupancy by modified histones associated with both active and repressed transcription, was observed for CYP3A4 and most 3A7 regulatory regions in both postnatal and fetal livers. However, the CYP3A4 regulatory regions had significantly greater occupancy by modified histones associated with repressed transcription in the fetal liver. Conversely, some modified histones associated with active transcription exhibited greater occupancy in the postnatal liver. CYP3A7 regulatory regions also had significantly greater occupancy by modified histones associated with repressed transcription in the fetus. The observed occupancy by modified histones is consistent with chromatin structural dynamics contributing to CYP3A4 ontogeny, although the data are less conclusive regarding CYP3A7. Interpretation of the latter data may be confounded by cell-type heterogeneity in the fetal liver.

Keywords:

CYP3A, drug metabolising enzymes, fetal development, histone modification, Primary fetal hepatocytes

Abstract

The current standard of care for endometrial cancer patients involves hysterectomy with adjuvant radiation and chemotherapy, with no effective treatment for advanced and metastatic disease. MUC1 is a large, heavily glycosylated transmembrane protein that lubricates and protects cell surfaces and increases cellular signaling through the epidermal growth factor receptor (EGFR). We show for the first time that MUC1 stimulates EGFR expression and function in endometrial cancer. siRNA knockdown and CRISPR/Cas knockout of MUC1 reduced EGFR gene expression, mRNA, protein levels and signaling. MUC1 bound strongly to two regions of the EGFR promoter: −627/−511 and −172/−64. MUC1 knockout also reduced EGFR-dependent proliferation in two dimensional culture, as well as growth and survival in three dimensional spheroid cultures. MUC1 knockout cells were more sensitive to the EGFR inhibitor, lapatinib. Finally, MUC1 and EGFR co-expression was associated with increased cellular proliferation in human endometrial tumors. These data demonstrate the importance of MUC1-driven EGFR expression and signaling and suggest dual-targeted therapies may provide improved response for endometrial tumors.

Keywords:

EGFR expression, endometrial cancer, Hec50 cell line

Abstract

It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signalling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.

Keywords:

Enzymatic shearing, H3K9Ac, KIR expression, Kit 500165, Ly49 chromatin accessibility, NK cell development, primary NK cells, SLP-76 knockout

Abstract

G-quadruplex (G4) structural motifs have been linked to transcription, replication and genome instability and are implicated in cancer and other diseases. However, it is crucial to demonstrate the bona fide formation of G4 structures within an endogenous chromatin context. Herein we address this through the development of G4 ChIP-seq, an antibody-based G4 chromatin immunoprecipitation and high-throughput sequencing approach. We find ∼10,000 G4 structures in human chromatin, predominantly in regulatory, nucleosome-depleted regions. G4 structures are enriched in the promoters and 5′ UTRs of highly transcribed genes, particularly in genes related to cancer and in somatic copy number amplifications, such as MYC. Strikingly, de novo and enhanced G4 formation are associated with increased transcriptional activity, as shown by HDAC inhibitor-induced chromatin relaxation and observed in immortalized as compared to normal cellular states. Our findings show that regulatory, nucleosome-depleted chromatin and elevated transcription shape the endogenous human G4 DNA landscape.

Keywords:

HaCaT cell line, Kit 500239, mapping G4 structures, primary keratinocytes, regulation of gene expression, U2OS cell line

Abstract

Nutritional restrictions such as calorie restrictions are known to increase the lifespan of various organisms. Here, we found that a restriction of sulfur extended the chronological lifespan (CLS) of the fission yeast Schizosaccharomyces pombe. The restriction decreased cellular size, RNA content, and ribosomal proteins and increased sporulation rate. These responses depended on Ecl1 family genes, the overexpression of which results in the extension of CLS. We also showed that the Zip1 transcription factor results in the sulfur restriction-dependent expression of the ecl1+ gene. We demonstrated that a decrease in ribosomal activity results in the extension of CLS. Based on these observations, we propose that sulfur restriction extends CLS through Ecl1 family genes in a ribosomal activity-dependent manner

Keywords:

nutrient limitation, Schizosaccharomyces pombe, yeast, Zip1 transcription factor

Abstract

Triple negative breast cancer (TNBC) is characterized by poor prognosis and a DNA hypomethylation profile. Withaferin A (WA) is a plant derived steroidal lactone which holds promise as a therapeutic agent for treatment of breast cancer (BC). We determined genome-wide DNA methylation changes in weakly-metastatic and aggressive, metastatic BC cell lines, following 72h treatment to a sub-cytotoxic concentration of WA. In contrast to the DNA demethylating agent 5-aza-2′-deoxycytidine (DAC), WA treatment of MDA-MB-231 cells rather tackles an epigenetic cancer network through gene-specific DNA hypermethylation of tumor promoting genes including ADAM metallopeptidase domain 8 (ADAM8), urokinase-type plasminogen activator (PLAU), tumor necrosis factor (ligand) superfamily, member 12 (TNFSF12), and genes related to detoxification (glutathione S-transferase mu 1, GSTM1), or mitochondrial metabolism (malic enzyme 3, ME3). Gene expression and pathway enrichment analysis further reveals epigenetic suppression of multiple cancer hallmarks associated with cell cycle regulation, cell death, cancer cell metabolism, cell motility and metastasis. Remarkably, DNA hypermethylation of corresponding CpG sites in PLAU, ADAM8, TNSF12, GSTM1 and ME3 genes correlates with receptor tyrosine-protein kinase erbB-2 amplification (HER2)/estrogen receptor (ESR)/progesterone receptor (PR) status in primary BC tumors. Moreover, upon comparing differentially methylated WA responsive target genes with DNA methylation changes in different clinical subtypes of breast cancer patients in the cancer genome atlas (TCGA), we found that WA silences HER2/PR/ESR-dependent gene expression programs to suppress aggressive TNBC characteristics in favor of luminal BC hallmarks, with an improved therapeutic sensitivity. In this respect, WA may represent a novel and attractive phyto-pharmaceutical for TNBC treatment.

Keywords:

breast cancer treatment, DNA methylation, Kit 500189, MCF-7 cell line, MDA-MB-231 cell line

Abstract

SETDB1 is a novel histone methyltransferase associated with the functional tri-methylation of histone H3K9. Although aberrant high expression of SETDB1 was experimentally observed in a variety of solid tumours, its underlying mechanisms in human carcinogenesis are not well known. In this study, we investigated the expression of SETDB1 in a large cohort of colorectal cancer (CRC) samples and cell lines for the first time. Our findings showed that SETDB1 was highly expressed in majority CRC tissues and cell lines; moreover, up-regulation of SETDB1 was negatively correlated with the survival rate of CRC patients. Functionally, over-expression of SETDB1 significantly promoted the proliferation and migration of CRC cells in vitro and in vivo, while knocking down SETDB1 suppressed their growth. Mechanistically, we showed that over-expression of SETDB1 significantly inhibited the apoptosis induced by 5-Fluorouracil in CRC cells, which was closely related to the inhibition of TP53 and BAX expression. Furthermore, we confirmed that SETDB1 could be recruited to the promoter region of TP53, which might contribute its inhibition of apoptosis. For conclusion, our study indicated that SETDB1 is essential for colorectal carcinogenesis and may be a newly target for treatment and prognostic evaluation in CRC.

Keywords:

apoptosis, Colorectal cancer, DLD-1 cell line, SETB1 expression

Abstract

Background: An individual with a bicuspid aortic valve (BAV) runs a substantially higher risk of developing aneurysm in the ascending aorta compared to the normal population with tricuspid aortic valves (TAV). Aneurysm formation in patients with BAV and TAV is known to be distinct at the molecular level but the underlying mechanisms are undefined. Here, we investigated the still incompletely described role of microRNAs (miRNAs), important post-transcriptional regulators of gene expression, in such aortic disease of patients with BAV as compared with TAV.

Methods and Results: Using a system biology approach, based on data obtained from proteomic analysis of non-dilated aortas from BAV and TAV patients, we constructed a gene-interaction network of regulatory microRNAs associated with the observed differential protein signature. The miR-200 family was the highest ranked miRNA, hence potentially having the strongest effect on the signalling network associated with BAV. Further, qRT-PCR and ChIP analyses showed lower expression of miR200c, higher expression of miR-200 target genes, ZEB1/ZEB2 transcription factors, and higher chromatin occupancy of the miR-200c promoter by ZEB1/ZEB2 in BAV patients, indicating a miR200c/ZEBs negative feedback loop and induction of endothelial/epithelial mesenchymal transition (EndMT/EMT).

Conclusions: We propose that a miR-200-dependent process of EndMT/EMT is a plausible biological mechanism rendering the BAV ascending aorta more prone to aneurysm development. Although initially supported by a miR-200c/ZEB feedback loop, this process is most probably advanced by cooperation of other miRNAs.

Keywords:

aortic aneurysm, bicuspid aortic valve, frozen human tissue, microRNA, Zeb-1, Zeb-2

Abstract

G-rich DNA sequences can form four-stranded G-quadruplex (G4) secondary structures and are linked to fundamental biological processes such as transcription, replication and telomere maintenance. G4s are also implicated in promoting genome instability, cancer and other diseases. Here, we describe a detailed G4 ChIP-seq method that robustly enables the determination of G4 structure formation genome-wide in chromatin. this protocol adapts traditional ChIP-seq for the detection of DNA secondary structures through the use of a G4-structure-specific single-chain antibody with refinements in chromatin immunoprecipitation followed by high-throughput sequencing. this technology does not require expression of the G4 antibody in situ, enabling broad applicability to theoretically all chromatin sources. Beginning with chromatin isolation and antibody preparation, the entire protocol can be completed in < 1 week, including basic computational analysis.

Keywords:

BG4 antibody, G4 ChIP, G4 DNA structure, Kit 500117, protocol