Publications

Abstract

Vascular complications, a major cause of morbidity and mortality in diabetic patients, are related to hyperglycemia-induced oxidative stress. Previously, we reported that rosiglitazone (RSG) attenuated vascular expression and activity of NADPH oxidases in diabetic mice. The mechanisms underlying these effects remain to be elucidated. We hypothesized that RSG acts directly on endothelial cells to modulate vascular responses in diabetes. To test this hypothesis, human aortic endothelial cells (HAECs) were exposed to normal glucose (NG; 5.6 mmol/l) or high glucose (HG; 30 mmol/l) concentrations. Select HAEC monolayers were treated with RSG, caffeic acid phenethyl ester (CAPE), diphenyleneiodonium (DPI), small interfering (si)RNA (to NF-κB/p65 or Nox4), or Tempol. HG increased the expression and activity of the NADPH oxidase catalytic subunit Nox4 but not Nox1 or Nox2. RSG attenuated HG-induced NF-κB/p65 phosphorylation, nuclear translocation, and binding to the Nox4 promoter. Inhibiting NF-κB with CAPE or siNF-κB/p65 also reduced HG-induced Nox4 expression and activity. HG-induced H(2)O(2) production was attenuated by siRNA-mediated knockdown of Nox4, and HG-induced HAEC monocyte adhesion was attenuated by treatment with RSG, DPI, CAPE, or Tempol. These results indicate that HG exposure stimulates HAEC NF-κB activation, Nox4 expression, and H(2)O(2) production and that RSG attenuates HG-induced oxidative stress and subsequent monocyte-endothelial interactions by attenuating NF-κB/p65 activation and Nox4 expression. This study provides novel insights into mechanisms by which the thiazolidinedione peroxisome proliferator-activated receptor-γ ligand RSG favorably modulates endothelial responses in the diabetic vasculature.

Keywords:

aortic endothelial cells, diabetes, hyperglycaemia, NF-κB, Nox4 gene expression, p65

Abstract

Chromatin immunoprecipitation (ChIP) is an important technique in the study of DNA/protein interactions. The ChIP procedure, however, has limitations in that it is lengthy, can be inconsistent, and is prone to nonspecific binding of DNA and proteins to the bead-based solid-phase matrices that are often used for the immunoprecipitation step. In this investigation, we examined the utility of a new matrix for ChIP assays, BioVyon Protein A, a solid support based on porous polyethylene. In ChIP experiments carried out using two antibodies and seven DNA loci, the performance of BioVyon Protein A was significantly better, with a greater percentage of DNA pull-down in all of the assays tested compared with bead-based matrices, Protein A Sepharose, and Dynabeads Protein A. Furthermore, the rigid porous disc format within a column made the BioVyon matrix much easier to use with fewer steps and less equipment requirements, resulting in a significant reduction in the time taken to process the ChIP samples. In summary, BioVyon Protein A provides a column-based assay method for ChIP and other immunoprecipitation-based procedures; the rigid porous structure of BioVyon enables a fast and robust protocol with higher ChIP enrichment ratios.

Keywords:

ChIP manufacturer comparison, Column based ChIP, NIH/3T3 cell line, Vyon porous plastic